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Two timescale harmonic balance. I. Application to
autonomous one-dimensional nonlinear oscillators

By J. L. SUMMERS AND M. D. SAVAGE

Department of Applied Mathematical Studies, University of Leeds,
Leeds LS2 9JT, UK.
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Two timescale harmonic balance is a semi-analytical/numerical method for deriving
periodic solutions and their stability to a class of nonlinear autonomous and forced
oscillator equations of the form &+ = f(x,%,A) and &+ = f(x, &, A, t), where A is a
control parameter. The method incorporates salient features from both the method
of harmonic balance and multiple scales, and yet does not require an explicit small
parameter.

Essentially periodic solutions are formally derived on the basis of a single
assumption: ‘that an N harmonic, truncated, Fourier series and its first two
derivatives can represent x(t), #(¢) and &(¢) respectively’. By seeking x(t) as a series
of superharmonics, subharmonics, and ultrasubharmonics it is found that the
method works over a wide range of parameter space provided the above assumption
holds which, in practice, imposes some ‘problem dependent’ restriction on the
magnitude of the nonlinearities. Two timescales, associated with the amplitude and
phase variations respectively, are introduced by means of an implicit parameter e.
These timescales permit the construction of a set of amplitude evolution equations
together with a corresponding stability criterion.

In Part I the method is formulated and applied to three autonomous equations,
the van der Pol equation, the modified van der Pol equation, and the van der Pol
equation with escape. In this case an expansion in superharmonics is sufficient to
reveal Hopf, saddle node and homoclinic bifurcations which are compared with
results obtained by numerical integration of the equations. In Part I1 the method is
applied to forced nonlinear oscillators in which the solution for z(f) includes
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474 J. L. Summers and M. D. Savage

superharmonics, subharmonics, and ultrasubharmonics. The features of period
doubling, symmetry breaking, phase locking and the Feigenbaum transition to chaos
are examined.

1. Introduction

As the name suggests, two timescale harmonic balance incorporates important
features from the method of multiple scales and that of harmonic balance. In
attempting to convey how this combination came about it is perhaps useful to trace
the development of both multiple scales and harmonic balance from the set of
perturbation/averaging methods which produce periodic solutions to nonlinear
equations.

In 1748 Euler proposed an initial theory of perturbation in his memoirs on the
mutual perturbations of the massive planets. Attempts to analyse the nonlinear
problem of perturbed two body motion can also be seen in the works of Clairaut and
D’Alembert, where the problem of secular terms (or secular variations) was also
encountered. Laplace and Lagrange, towards the end of the 18th century, derived
approximate solutions to many celestial problems by using perturbation theory and,
in the study of the Sun-Jupiter—Saturn configuration by Laplace, there are elements
of the method of averaging and higher-order perturbation techniques. However,
Poisson (around 1830) initiated the idea of seeking solutions in the form of a power
series in terms of a small parameter. A detailed account of the history of early
perturbation theory is given by Wilson (1980).

Modern perturbation methods emerged with the work of Lindstedt (1883) and
Poincaré (1892) in deriving periodic solutions to general weakly nonlinear dynamical
systems of the form

Eta=upuflx,2), n<l. (1.1)

Since u is assumed to be a small parameter, the solution does not differ greatly
from the solution of the harmonic equation. The problem, however, is with frequency
w which, although close to unity, is unknown and x dependent. The essence of the
Lindstedt—Poincaré technique is to expand both 2 and w as a power series in ¢ and
determine the terms in the expansion for w by the suppression of secular terms.

A significant development in modern perturbation methods came with the idea of
introducing multiple timelike variables as discussed independently by Kevorkian
(1961, 1966), Cochran (1962) and Mahony (1962) and later by Nayfeh (1973). By
introducing a transformation of time, ¢, and expanding as a power series in

t=owltr=(1+pw,+plo,+..) 1
=T7—pw, 7+ 0(u?) (1.2)

uniformly valid expansions can be derived by selecting the w; so that secular terms
are suppressed. The solution expansion obtained by this and the Lindstedt—Poincaré
Technique reveals that the functional dependence of # on ¢ and g is not disjoint as
x depends on the combination u¢ in addition to ¢ and u separately. Therefore x is
written in the form x = w(¢, ut, #). Furthermore, when the expansion is taken to
higher orders then

w(t, p) = x(t, pt, W2, u®, ..., u), or equivalently

a(t, p) = (T, 1, 1, T, .., ), (1.3)
Phal. Trans. R. Soc. Lond. A (1992)
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Two timescale harmonic balance 475

where T)(T, = pu't) represent different timescales. This is the basis of the method of
multiple scales, which has proved a powerful tool for yielding small amplitude
periodic solutions in that region of parameter space where y is small. In fact multiple
scales has applications far beyond time-dependent problems where the only
requirement is that they should contain a small parameter so that uniformly valid,
power series, solutions for the dependent variable can be derived.

Kuzmak (1959) considered strongly nonlinear oscillators with weak damping of
the form

&+ fih(x, at) @ +g(e, at) =0,

where 0 < ji < 1 and ¢ is nonlinear in z. He developed a two timescale approach
seeking a solution in the form

2, i) = wolw, fit) + fizey (0, i)
and equating O(1) terms to derive a ‘standard’ equation for x,, i.e.
[dw(7)/dt]? 0%, /0w? +g(2,,7) = 0 where 7 = jit.

An equation for #, is also derived by equating O(4) terms.

Averaging methods for the analysis of weakly nonlinear dynamical systems, as
given by equation (1.1), formally began with the work of van der Pol (1927). He
proposed a method of slowly varying coefficients, based upon the first harmonic in
the Fourier series expansion for the solution (). Bogoliubov & Krylov (1937)
extended this idea to develop an asymptotic method in which a solution to equation
(1.1) with slowly varying amplitude is sought as a power series in 4 ;

x = acos P+ pux(a,P)+...,

where a=pA(a)+...., ¢=14+u2(a)+..., (1.4)
and A (a) = —%Jznf(a cos @, —asin @) sin ¢ de,
2(:[ (1.5)
Q,(a) = ﬁj flacosp, —asing)cos ¢ de.

Simultaneously Bogoliubov & Krylov (1934) developed the method of averaging
for non-autonomous, weakly nonlinear equations of the form

i+ = puf(x, 1), (1.6)

where u is a small parameter and f is periodic in time. By means of a simple
transformation this equation is expressed in the normal form for averaging

y=pg(y.t); yek? (1.7)

and an average of g is taken over one period so as to generate an autonomous system
whose stationary solutions are now of interest. The theory has been well developed
(see Hale 1969 ; Sanders & Verhulst 1985; Lochak & Meunier 1988).

Morrison (1966) and Perko (1969) demonstrated that by using two timescales, ¢
and 7, the first term in the expansion of the solution via multiple scales is equivalent
to averaging, implying validity of the approximations on a timescale of order 1/u.

Alternative ideas for analysing weakly nonlinear equations continued to develop
in parallel. Bogoliubov & Krylov (1937) proposed a method known as equivalent

Phil. Trans. R. Soc. Lond. A (1992)
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476 J. L. Summers and M. D. Savage

linearization in which a harmonic solution of the form « = a cos ¢ is specified with a
and ¢ given by (1.4). The key idea is to derive an equivalent linearized differential
equation of the form -
F+ A2+ = O(u?), (1.8)

which, to order x?, has the same solution as the original equation and

A= E’%f:nf(acosqﬂ, —asin@)sin@dg,

@2 = 1+nﬁaf:nf(acos¢, —asin ¢) cos ¢ de.

With A and @ so defined Bogoliubov & Krylov established two properties; namely
the principle of the equivalent balance of energy and the principle of harmonic
balance. In the Soviet Union these ideas were then extended by Theodorchik (1948)
with a method of energy balancing and by Goldfarb (1947) with a further
development of harmonic balancing. (The work of Bogoliubov & Krylov can also be
found in the book of Bogoliubov & Mitropolsky (1958).) Elsewhere this linearized
approach gave rise to the describing function, developed independently and from
different points of view, in the works of Kochenburger (1950) in the United States,
Oppelt (1947) and Tustin (1947) in the United Kingdom and in France by Loeb
(1951) and Blaquiere (1951). The theoretical basis for the describing function
analysis is rooted in the van der Pol method of slowly varying coefficients in the sense
that a nonlinear equation is reduced to a quasi-linear equation whose terms have
coefficients varying slowly with time. (Detailed accounts of many of the techniques
described can be found in books by Blaquiere (1966) and Siljak (1969).) In §2 of
Kuzmak (1959), examples are given when the solution of the ‘standard’ equation is
expressible as Jacobi elliptic functions. However, in §3, when the solution of the
‘standard ’ equation cannot be expressed in terms of special functions it is written
as a Fourier series with coefficients varying on a slow timescale. The evaluation of the
coefficients of the Fourier series is essentially harmonic balance.

It is from this background that modern harmonic balance emerged in which a
solution to a nonlinear equation (which may or may not contain a small parameter
i) is sought as a truncated Fourier series and individual harmonics are balanced.
Mickens (1984, 1986) applied the method to a class of ‘antisymmetric dynamical
systems’, whose solutions are expressed in terms of odd harmonics only. For
equations with strong nonlinearities Bejarano & Yuste (1986); Margallo & Bejarano
(1987) have shown that the more harmonics included in the solution then closer is the
agreement with results obtained by using numerical techniques. The one major
drawback of harmonic balance is the absence of a natural stability criterion; one has
to appeal to various approximate devices to test the stability of a solution.

Therefore, by the mid-1980s the point is reached where two quite different
methods for deriving periodic solutions have emerged, each with its own strengths
and limitations. Multiple scales is an analytical method yielding uniformly wvalid
solutions, and their stability, but only in a restricted region of parameter space,
where a given parameter y is assumed to be small. Harmonic balance considers the
periodic solution as a finite series of harmonics and can in principle yield solutions,
but not their stability, over a wide range of parameter space which imposes no
restriction on any parameter being small. Clearly the next step (Savage 1986) was to
incorporate a two timescale approach with harmonic balance as a device for

Phil. Trans. R. Soc. Lond. A (1992)
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Two timescale harmonic balance 477

generating a stability criterion. This method, now referred to as two timescale
harmonic balance (2THB), has been substantially refined so that periodic solutions
can be formally derived for a class of oscillator equations on the basis of a single
assumption: ‘that an N harmonic, truncated, Fourier series and its first two
derivatives can represent x(f), #(!) and #(t) respectively’. This means that there
should be no discontinuities in «, # and % and each series should contain ‘sufficient
harmonics’. In practice there is a limit to the number of harmonics that can be
conveniently handled via symbolic manipulation and hence this imposes a restriction
on the magnitude of the nonlinearities which is found to vary according to the
individual problem. Applications of the method to both autonomous and forced
nonlinear systems form parts I and II of this paper.

In part I autonomous nonlinear oscillators, involving a parameter, u are
considered. In each case periodic solutions are expressed as a series of superharmonics
only and this is sufficient to determine Hopf, saddle node and homoclinic bifurcations
and ‘weak’ relaxation oscillations. It is also shown that, when u is small, identical
results can be derived to those obtained by multiple scales, taken to order u,
provided two harmonics are included for asymmetric oscillators and one for
antisymmetric.

In part II forced nonlinear oscillators of the form

&+ 02 +ax+ fx* +yx® = F coswt

are considered for «, f, v, 6 up to O(1). Periodic solutions are now expressed as a series
of superharmonics, subharmonics and ultrasubharmonics. This permits various
features of period doubling and the Feigenbaum transition to chaos, subharmonic
and ultrasubharmonic resonances, and phase locking to be determined.

2. Formulation of the method

The method of 2THB is to be applied to autonomous equations which may or may
not contain a small parameter. With the van der Pol equation, for example,

E+ @ —p)e+x =0 (2.1)

self-excited periodic solutions (limit cycles) will be sought both when the parameter
w is small and of order unity including the cases u = 3.0 and 5.0 corresponding to
‘weak ' relaxation oscillations. For u large the work of Dorodnicyn (1947) and Carrier
(1953) using asymptotic power series is relevant.

Note that equation (2.1) could be recast in the form of (1.1) by means of the
transformation @ = u#z so that p is a measure of the nonlinear (damping) terms.

There are two main features of the method, ‘

1. The equation under investigation is written in the form of a nonlinear oscillator

F+wlr = (0*—1)x+f(x,2), (2.2)

where the frequency o is initially unknown and f(x,%) is a nonlinear function
involving « and 4.

Any 2m/w periodic solution of (2.2) will have a Fourier expansion, and our basic
assumption is that N harmonics will provide a sufficiently accurate representation.
Therefore we write

K
=

I

N
=

+
M=z

(A 1)1, cos (kwt) + B, 1, sin (kwt)), (2.3)

=
I
-

Phil. Trans. R. Soc. Lond. A (1992)
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478 J. L. Summers and M. D. Savage

where the coefficients Z;, 4,,;, and B;,;, have subscript L to indicate that (2.3) is a
solution for the limit cycle solution. In addition, B, is set to zero without loss of
generality, to give an equation for the frequency, w, and Z;, w, 4, A(k) L and B, 1,
k = [2,N] are determined by balancing harmonics. Furthermore it is assumed that
#(¢) and #(¢) can be represented by the first two derivatives of (2.3) so that on
substitution into equation (2.2) a Fourier series is obtained in which the Fourier
coefficients are identically zero.

N
Etw*r—(0*—1)a—f(x,2) = p(x, 2, & 1) = Ja,+ 3 (a; cos (kwt) + b, sin (kwt)),
k=1
(2.4)
21/ w
where Ay = Lo (p(x, 2, &,t))dt = 0,
0 271: p
0
la) 271/ w
a, = ——f (p(, 2, &, 1)) cos (kwt) dt = 0, (2.5)
27w J,
27/ w
L= 19J (p(x, &, &, 1)) sin (kot) dt = 0,
27 ), )
k=1,...,N.

The 2N coefficients and frequency, w, which characterize the periodic orbit are
therefore given by 2N+ 1 algebraic equations

GilZ, Ay @, Ay 1o By, k = [2,N]) = 0, (2.6)

where ¢ =[1,2N+1] and provided the basic assumption of the method holds we
would expect the accuracy of a solution to increase with N. Essentially the above
process defines a formal basis for what is in effect a method of harmonic balance for
N harmonics.

2. An implicit parameter, €, is now introduced for the sole purpose of devising a
stability criterion. In fact € is used to relate timescales s and 7 to ¢.

T=¢t, and s=t{, (2.7)

where s is the timescale associated with the phase variation and 7 is associated with
the amplitude variation. More precisely 7 is the timescale related to the motion in the
Poincaré section and for one-dimensional self-excited oscillators this section is one
dimensional. For this class of oscillator equations, there is always a domain close to
the limit cycle, the extent of which is dependent on parameters, where amplitude
variations are small, and hence (for one degree of freedom autonomous equations) €
is small.
By means of the chain rule;

%—% ea_sf- @_azx_i_ eazx+2az_x (28
dt ~0s Cor A ot Cosor € o -8)

and equation (2.2) is transformed into

0% o2 0% dx  Ox .
s st = (v —1)x—265§5+f(x,6§+66;>+0(e ).

Phil. Trans. R. Soc. Lond. A (1992)
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Writing 2’ = 0x/0s and expanding f as a Taylor series, the equation above becomes
2+ 0 = (w*—1)x+f(x,2)—2¢ 0z /Or + €f(x, ') O /0T + O(€?), (2.9)

where terms of order €", n > 2, shall be ignored in the light of ¢ € 1 and where
B(x, ') = (0f/0x’) is a known function which is independent of e.

The idea is to solve equation (2.9) for trajectories close to a periodic orbit which
is 21 /w periodic in s, and therefore a solution of similar form to (2.3) is sought with
slowly varying coefficients. 4, is replaced by 4,(r) and B, replaced by By(r),
therefore z(t) is given by

x(t) = g (A(7) cos (kws) + By, (7) sin (kws)) (2.10)
k=1

and an equation is derived for the frequency as before by choosing the phase of the
first harmonic such that B,(7) = 0 for all time. Expression (2.10) with B,(7) =0 is
now substituted into equation (2.9), which is then expressed as a Fourier series and
the Fourier coefficients are equated to zero;

¥+ —(0*—1)x—f(x, 2')+ 2e 02’ /O —ef(x, ") Ox /OT + O(€?)
= p(x, ', x",0x /01,02’ /01, 8)

N
= 1a,+ X (@, cos (kws)+ b, sin (kws)), (2.11)
k=1
21/ w ’
where Ty = %%f (ﬁ(x, ', x”,%;f, %ZCT—, s)) ds=0, )
0
L (s x, 2, 2" G Qo' s})cos (kws)ds =0 (2.12)
ak_QTC o p ) ) ,aT’aT’ =V, .
— 1w [Pl , ., 0x O’ . .
b, = §EL (p(x,x S s)) sin (kws) ds = O,J

k=1,...,N.
Equation (2.12) represents 2N+ 1 equations which can be written in the form of
(2.6)
G\(Z, A, 0,4,,B,)+D,(Z,A,,d4,/d7,0, 4, dA,/d1,B,,dB,/dr) =0
Gy(Z, Ay, 0,4,,B,)+Dy(Z,A,,d4,/dr,0,4,, dA,/dr,B,,dB,/dr) =0,

144 ddy |y 9Be )= 0, i=[32N+1]k=[2N]
dr dr dr

(2.13)

@i+e( 1 z: (M’c
where G, M}, M¥,N¥ are all functions of Z,A4,(r),w,A,(1),B,(7):k =[2,N], i=
[3,2N+1], and on the limit cycle D, = D, = 0.

Clearly the difference between (2.6) and (2.13) is of order ¢, and therefore the
differences between 4,(r) and A4 4,1, A;(7) and 4,1, and By(r) and By, k = [2,N]
must also be of order €. For notational convenience (4,1, 4 4 1, Bayr:k = [2,N]) will
be written as the vector Hy, and (4,(7), 4,(7), B,(1):k = [2,N]) as H(7). Therefore, if

Phil. Trans. R. Soc. Lond. A (1992)
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the vector My(Z,w, H(t)) represents (M}, M¥,N¥:k = [2,N]), i = [3,2N+ 1], a Taylor
expansion about Hy, gives

CZ, 0y, Hy) + (G, /0H) - (H(1)— Hy) = eM(Zy, oy, Hy ) (d/d7) (H(r)— H)

+higher-order terms, ¢ =[3,2N+1],
where for two vectors a,be R*N1,

By equation (2.6) and writing H(r) — H, as z the above equation becomes retaining
only linear terms

eM(Z,w,, Hy) dz/dr = (0G,/0H) -z, i=3,2N+1], (2.14)

which will determine the stability of the periodic orbit given by (2.10).

If the matrix M has the vectors M;, + = [3,2N+1], as its 2N—1 columns and the
vector G represents (G*Z.:i = [3,2N+1])) then expression (2.13) can be written in a
compact form:

G(Z,0,Hy+e(dH/dT)M(Z,w, H) = 0,
Z = Z(w, H,edH/d1) = Z(w, H),
w=uZ,H,¢dH/dTr) = w(Z, H).

A trajectory close to an asymmetric limit cycle solution has an amplitude that
varies with 7 and as a consequence the mean of oscillation, Z, and frequency, w, are
affected since they depend on the amplitude, H(r). Note that Z does not vary
independently since this would not describe a neighbouring trajectory in these one-
dimensional autonomous oscillators.

3. Applications

In this section 2THB will be applied to three autonomous equations: the van der
Pol equation (van der Pol 1922),

F+(@—p)e+a =0, (3.1)
the modified van der Pol equation;
E4+(fat+at—p)i+a=0; (3.2)
the van der Pol equation with escape,
F+(@P—p)e+ax—yx* =0, (3.3)

each of which could be recast by a suitable transformation to make g a measure of
the nonlinear terms. For u small equation (3.3) could be analysed by Kuzmak’s
method ; however, 2THB imposes no restriction on g provided the basic assumption is
valid, and results are compared with numerical solutions. In each case we shall seek
solutions both when z is small and order unity and see how the number of harmonics,
N, required for an accurate representation for x(¢) depends directly on the values of
#, B, and y. Whenever z < 1, which from the linearized equation is seen to correspond
to slow decay over a large domain of the one-dimensional Poincaré section, solutions
can be obtained that are identical with the method of multiple scales to order x, see

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. Comparison of a one harmonic approximation with numerical results for the small y limit
cycle solution of the van der Pol equation (3.1). , 2THB ; ————, numerical. (a), (¢) » = 0.1; (b),
(d) p=0.5.

Appendix A. However, when g is O(1) the domain for which 7 is slow compared with
s (implying e small) is much smaller.
(@) van der Pol equation
With two timescales introduced equation (3.1) reduces to a form analogous to
equation (2.9)
¥+ v = (w*—1) x— (¥ —p) &’ —2€ 02’ /01 — e(x® — p) 0 /OT + O(€?). (3.4)
(i) p<1
A first harmonic approximation to z(t) is given by
x(t) = A(T) cos (ws) + B(7) sin (ws)

in which, without loss of generality, B(7) can be set to zero and there is no need to
include a displacement Z due to a result obtained in Appendix B,

x(t) = A(T) cos (ws). (3.5)

Substituting for z(¢) via (3.5) into equation (3.4) and expressing the result as a
Fourier series (cf. equation (2.11)) gives

@, =0=e(dd/dr) 34%—pu) = (0*—1) 4, (3.6a)

b, =0=¢dA/dr = 34 (u—34%). (3.6b)

Interpretation. 1. Stationary solutions of (3.6) corresponding to limit cycle

solutions for xz(t) are given by
A=4,=2+/p and o=w,=1.
In figure 1 comparison is made between the analytical and numerical solutions for
y = da/dt against z and « against ¢, for two values of u; 4 = 0.1, there is very close

Phil. Trans. R. Soc. Lond. A (1992)
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agreement over the whole cycle; u = 0.5, there is clearly a difference between the two
solutions illustrating the need for higher harmonics in the solution for z(t).

2. A simple stability argument follows from the evolution equation, (3.65). The
solution with 4 = 24/ is stable since: when 4 < 2+/p; d4/dr > 0 and therefore 4
will increase to 24/ 4 as ¢ increases, similarly when 4 > 2+/p; d4/dr < 0 and 4 will
decrease to 24/ as t increases.

3. From the above solution, 4 is O(u?) and therefore (3.6b) implies that ¢ is O(p)
which means that amplitude variations occur on a slow timescale of order (ut).

4. Equation (3.6a) can be rewritten via (3.6b) in the form

w'—1 =3(u—3A4% GA*—p),

where the right-hand side is O(u?) and can therefore be neglected. The solution to
O(u) is therefore
w=1; cdd/dr=}34(u—14Y), (3.6¢)

which is similar to van der Pol’s own approximation. This solution is identical to that
obtained by multiple scales to order 4, which then raises the question of whether this
is always true for any autonomous second-order equations with a small parameter.
It is shown in Appendix A, that solutions obtained by 2THB and the method of
multiple scales, to order p, are generally the same provided the solution includes first
and second harmonics. In the case of the van der Pol equation, however, the second
harmonic does not contribute to the solution, as a consequence of a result established
in Appendix B for oprs with antisymmetric vector fields. It is shown that only odd
harmonics appear in the solution () of any second-order autonomous dynamical
system which is antisymmetric, i.e. possesses an antisymmetric vector field.

5. If u is negative but remains small, the solution of equation (3.6) is 4; = 0 and
w is undetermined, implying that there are no periodic solutions for u negative but
there is a stationary solution at the origin. When u is positive, A; = 24/ and
wy, = 1 is a solution as discussed above, but A, = 0 and w arbitrary is still a solution of
(3.6). Therefore as u goes through zero from negative to positive, the number of
solutions of (3.6) changes from one to two. A change in the character of the solution
takes place at 4 = 0, which is a feature of the Hopf bifurcation at (x, u) = (0,0). By
a similar argument to that of (2) above, the stability of the origin can be determined
for x4 negative (stable) and positive (unstable).

(i) u = 0(1)

1. The solution. When the control parameter y is no longer small a first harmonic
solution for x(¢) is generally insufficient (cf. figure 1) and there is need for an N
harmonic expansion (cf. equation (2.10)), and as before the phase of the first
harmonic is chosen to be zero (i.e. B; = 0).

The procedure is as before, where the expansion given by (2.10) is substituted into
(2.11) a set of 2N+ 1 equations are produced from equations (2.12), two of which are
algebraic, and 2N—1 involve first derivatives of H, where H is the vector of the
2N—1 coefficients (4,,4,,B,:k =[2,N]) of the Fourier expansion (2.10)

@y =0=5(Z,H ,0w,A)+e(dH/dT)- C, =0, (3.7a)
@, =0=Q2Z,H 0w,A)+edH/dr) - C, =0, (3.7b)
by=a,=0b,=0=¢(dH/d)M(Z,H,0,))+G(Z, H,v,1) =0,

k=[2,NH,Ge R, (3.7¢)

Phil. Trans. R. Soc. Lond. A (1992)
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where G(Z, H, w, 4) is the vector of terms from the integrals, b,,@,,b;, k = [2,N], in
(2.12) which do not involve 7 derivatives, i.e. equations (2.5). The matrix
M(Z,H,w,4) is 2N—1x2N—1, 5(Z,H,w,A) = 0 and (Z, H,w, ) = 0 are algebraic
equations which give the mean and the frequency of the limit cycle solution
(H = Hy), that arise from balancing the non-oscillatory terms and cos (ws) coefficients
respectively. 4 is the vector of control parameters such that 4 = (1), 4 = (4, 8), and
A = (u,7) in equations (3.1), (3.2), and (3.3) respectively. Equation (3.7b) enables the
frequency of the periodic solution to be evaluated, and is dependent on H (which in
turn depends on 4), so that it can be written explicitly as w = w(Z, H, 4). By inverting
matrix M, (3.7¢) becomes a set of autonomous equations which describe the time
evolution of the Fourier coefficients.

edH/dr =—-G(Z,H,w, ) M(Z,H,w, 1)) = F(Z,H,w, 4) (3.8a)

and dH/dr is O(1).
EZ,Hw,\)+FZ Hw i) C,=0=>Z=ZH,w,Ai), (3.80)
QZ Hw A+FZ Huw i) C,=0=>0w=wZH,2AJ). (3.8¢)

The problem of seeking periodic solutions of equation (2.2) is replaced by that of
finding stationary values for the coefficients of the expansion (2.10), where Fe RN ™!,
Note that M(Z, H,w, A) is dependent on the term ef(x, ") 0x/0r, which in turn is
dependent on 4.

The stationary solutions of (3.8) are given by dH/dr =0, i.e. H= H;, where
F(Z,H,,w, i) =0. These stationary values of the coefficients yield the solution
written explicitly by using (2.10) as

N
@ (t) = Zy,+ A4 )1, c08 (W, 8) + X (A1, €08 (kwy,8) + By 1, 8in (kwy, 8))
k=2

and

de,, . y .

F —wpAqysin (wg,8)+ X kw(—A 4 1 sin (kwy, 8) + By 1, cos (kwy, 8)),

k=2

where Hy, = (A4)1(4), AgyL(4), ByyL(4):k = [2,N]),

w,=wZy, H,A) and Z;,=ZH;,w,A).

To actually obtain the equations represented by (3.8) is algebraically tedious and
susceptible to human error for more than one harmonic, and it is therefore
convenient to make use of a symbolic manipulator. Equally the analysis of the
equations is not a straightforward task, and it is helpful to have use of a path
following package with the tacility to follow stationary solutions of a (2N—1)-order
dynamical system with up to two control parameters. Throughout this work the
authors have used the computer algebra package, REDUCE (cf. manual by Rayna
1987) and the path following routine, PaTH (Kaas-Petersen 1987).

Returning to the application of 2THB to the van der Pol equation (3.1), the
resulting equations are evaluated with harmonic expansions of two, four, and five
harmonics. A set of these equations for five harmonics is given in Summers (1991).
Figures 2 and 3 respectively demonstrate the results of a three and seven harmonic
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Figure 2. Comparison of a two harmonic approximation with numerical results of the oscillation

for (a), (c) p = 1.00 and (b), (d) u = 2.00 in equation (3.1). ——, 2THB; ————, numerical.
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© 3.0L@
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Figure 3. Comparison of a four harmonic approximation with numerical results of the oscillation
for (a), (¢) # = 1.00 and (), (d) # = 2.00 in equation (3.1). , 2THB; ————, numerical.

expansion, each with two values of u, (« = 1.0 and x = 2.0). On the left side of figure
4 results are shown for a nine harmonic expansion with x = 2.0 and on the right z—¢
plots are shown for x4 = 3.0 and 5.0 for a 51 harmonic expansion. In each case it can
be seen that the analytical solution given by the expansion tends to the numerical
solution as the number of harmonics is increased. Also for 4 = 3.0 and 5.0 there are
two parts of the limit cycle where the gradient changes sharply indicating the feature
of a relaxation oscillation which is well established when u is large. For 4 = 5.0 the

Phil. Trans. R. Soc. Lond. A (1992)
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q (@ N 3.0 )
y 0 X 0
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—4 0 4 0 2 4 6 8
X t
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-2 -30
1 3 5 7 2 6 10

t t
Figure 4. Comparison of a five harmonic approximation with numerical results of the oscillation
for (a), (¢) p=2.00 and comparisons of the oscillations for a 51 harmonic expansion with
numerical results when (b) = 3.00 and (d) ¢ = 5.00 in equation (3.1). , 2THB; ————,
numerical.

51 harmonic expansion was needed to achieve close agreement between analytic and
numerical curves of z(t) against ¢. The right-hand side of figure 4 illustrates that
2THB can, in principle, yield solutions for ‘weak’ relaxation oscillations yet in
practice the number of harmonics required soon becomes excessively large. This
illustrates that there is a restriction on g according to the number of terms that can
be handled by the symbolic manipulator.

Figures 3 and 4 also reveal that agreement between analytic and numerical results
is best illustrated by plotting x(t) against ¢ rather than limit cycle orbits which exhibit
small oscillations (the amplitude of which diminishes with increasing N). This is to
be expected since a key feature of a relaxation oscillation is a rapid change in 2 (and
even greater change in &) which will require more harmonics than in the expansion
for .

A clear justification for writing the solution, (), as a Fourier series is observed by
analysing the relative frequency spectra, where it can be seen how the energy of the
oscillation is distributed among the higher harmonics. In figure 5 a comparison
between the numerical and analytical relative frequency spectra is made for u = 3.0.

2. The stability. To construct a stability argument for a many harmonic
expansion, the stability of the Fourier coefficients must be considered. Clearly the
solution () will be stable if all of these coefficients, whose evolution is given by
equation (3.8), are stable. The usual procedure for determining the stability of
stationary solutions of the dynamical system (3.8) is to linearize about the solution
H, . Setting H = H, +z with |z| < 1, substituting into equation (3.8) and expanding
F as a Taylor series gives (cf. (2.14))

edz/dr = F(Z,,H,, 0, A)+L(Z, H,0,A) 2= L(Z, Hy,0,4) 2, (3.9)

where the matrix L is the jacobian of F at H= H\, vy, = w(Z, H},4), and Z;, =
Z(H,,wy, ). The eigenvalues of the matrix L can then be calculated to determine the
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amplitudes
[ 8]

o 3 6 9 12 15
relative frequency

Figure 5. Numerical and analytical relative frequency spectra for 4 = 3.00 in equation (3.1).
——, Numerical spectra; &, 2THB amplitudes.

stability of the solution, H;, thus determining the stability of the Fourier coefficients,
H. Increased saving in computing time is achieved if the path following routine has
a facility for calculating the eigenvalues of L at every step on the path.

With the presence of a control parameter in the governing equation the solution
may undergo a change in stability at a particular value of this parameter, known as
a bifurcation point. This can be determined by analysing the eigenvalues of L (cf.
equation (3.9)) associated with the solution of expression (3.8) as the control
parameter is varied. Again this is facilitated by the use of a path following package
such as PATH. In the van der Pol equation with 4 negative, a solution is determined
to the set of equations (3.8) yielding H}, = 0 with all the eigenvalues of L having a
negative real part. This identifies the stationary solution and its stability at the
origin of phase space. By following the path of the solution as u is increased, the
bifurcation at 4 = 0 is found where one eigenvalue of L passes through the origin of
the complex plane, and simultaneously the remaining eigenvalues pass into the
positive half of the complex plane with non-zero imaginary part. The origin has now
become unstable and the amplitudes of the expansion will grow from zero with
increasing time. A complete bifurcation analysis at 4 = 0 using PATH, shows that the
eigenvalue of L passing through the origin of the complex plane indicates the
existence of a bifurcating branch which has its tangent pointing in the direction of
the amplitude growth of the first harmonic. The remaining eigenvalues indicate a
type of equivariant bifurcation and from the viewpoint of 2THB the interpretation
of this bifurcation indicates a growth in the coefficients of the higher harmonics at
w# = 0. When y is positive the origin of the phase space is unstable as every eigenvalue
of L has positive real part. At (x,u) = (0,0) there are two branches that can be
followed, one corresponding to the stationary point and the other to the periodic
solutions. If the bifurcating branch of periodic solutions is followed (by a path
following package) the eigenvalues of L for this second solution all have negative real
part and the solution branch is therefore stable as expected.
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Figure 6. (@) Numerical (-——-) and analytical ( ) variation with the parameter u, of the

characteristic multiplier for equation (3.1). (b) Frequency variation with the parameter u, for
different harmonic expansions for the solution of equation (3.1). , numerical.

In numerical investigations the problem of stability is analysed by using the
notion of a Poincaré map, and in the case of second-order autonomous dynamical
systems this map would be one dimensional. There is a need therefore to show that
the method of 2THB produces a stability argument consistent with the Poincaré
map approach. This is achieved by finding an estimate, via 2THB, of the
characteristic multiplier of the one-dimensional map and comparing with the
numerically obtained value. Figure 6 shows this comparison for the van der Pol
equation and the detailed mathematical analysis for estimating the characteristic
multiplier b of a one-dimensional map is given in Summers (1991). Figure 6 also
shows the variation of the frequency with u for various harmonic expansions and
compares these results with numerical results.

(b) Modified van der Pol equation

Introducing two timescales equation (3.2) reduces to the form

24w = (wz—1)x—(ﬂx4+x2—ﬂ)x’—2ea§r —e(ﬂx4+x2—,u)g;+0(ez). (3.10)
(i) p<1
A first harmonic approximation of x(¢) is
x(t) = A(T) cos (ws), (3.11)

which is substituted into equation (3.10) and the result expressed as a Fourier series
(cf. equation (2.7)) giving

@, =0=>ed4/dr(u—342—36A%) = (1—-w?)4, (3.12a)
b, =0=>edA/dr = A(—BA*—24%+8u). (3.12b)
Interpretation. 1. Stationary solutions have w = w;, = 1 and amplitude 4, where
PAL+2A4% —8u =0,
A} = [~ 1£(1+8up))/p
(a) If B> 0 there is one non-zero solution for A7,
AL = F( (1+8uB)—1).
Phil. Trans. R. Soc. Lond. A (1992)
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t t
Figure 7. Comparison of a one harmomc approximation with numerical results for the modified

van der Pol equation (3.2); for (a), (¢) (4, 8) = (0.10, —1.20) both the stable and unstable orbits are
shown; and for (b), (d) (4, ) = 0 04 —0.49) only the unstable orbit is illustrated. , 2THB;
————, numerical.

(i) If 4> 0 and 8uf < 1, then 4, ~ 24/ u. .
(i) If 8 is large and 8up is no longer small, then A, is O((x/p)7)
(b) If # <O there are two non-zero solutions for 4 with w, = 1:

Ai(i) == 1+ (1+8up), u<-—1/8p,

Afay =—F 11—V (1+8pf)), 0<u<—1/8p.

There are, therefore, coexistent limit cycles when f <0 and 0 < u < —1/88.
(i) If 1+8up = 6* with 6 < 1, the two limit cycles have amplitudes

and

Ay~ (1+%3)(_1//’))%§ Ay ~ (1_%5)(_1/@%’ (3.13)

i.e. of O(2+/(2u)) and so both orbits are circular since u is small.
(i) If [8uf| < 1 and g is O(1), the two limit cycles have amplitudes

Ay ~ (‘2//7))% and  Aygy ~ 2

corresponding to large (non-circular) and small (circular) orbits respectively.

Figure 7 shows these coexistent limit cycles obtained numerically and by (3.12) for
case (i) (4, 8) = (0.1, —1.2) and for case (ii) (only the unstable periodic orbit is shown)
(#, B) = (0.04, —0.49). For the former case, as expected close agreement is found
when 1 +8u4 is small and f is O(1) whereas the latter case shows the need to include
higher harmonics in the solution for the unstable limit cycle.

2. As before a stability argument follows from the amplitude evolution equation
(3.12b). With f negative and 0 < A4 < A, < Ay, then d4d/d7 >0 and 4 will
increase to AL(n) as t increases. For Ay, <4 < A4y, d4 / d7 < 0 and 4 will decrease
to Ay as t increases. Therefore the solution 4 = Ay is stable.
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Figure 8. Comparison of a three harmonic approximation with numerical results of (@), (c) an
unstable orbit ((u, ) = (0.04, —0.49)) and (b), (d) a stable orbit ((#, 8) = (1.0, 2.0)) for the solution
of equation (3.2). ——, 2THB; ————, numerical.

Similarly when 4 ;) < 4y < 4;d4/dr > 0, 4 will increase and move away from
Ay as t increases. 'Il‘herefore the solution 4 = 4, is unstable.

3. When 4, is O(u?) then e is O(u) via equation (3.126) and so (ut) is a characteristic
slow timescale for amplitude variations. Furthermore the term on the left-hand side
of this equation is O(x®) and the solution to O(u) is w;, = 1. Identical solutions would
be obtained by multiple scales, to order u for 4 small, as a consequence of the results
of Appendixes A and B.

4. When g is negative and £ positive the only solution is 4, = 0 and w arbitrary,
and when f# and px are both negative the zero solution still exists with the same
stability, but there is a limit cycle given by 4, = 4, ;. It is clear that for all values
of f there is a Hopf bifurcation at u = 0, and when £ is negative there is a curve in
control space, (u, (), given by uf = —3%, where to the left there are two non-zero
amplitude solutions while to the right there are no solutions with non-zero
amplitudes. The point in (u, §) space where uf = —% is a first approximation of the
saddle node bifurcation (or fold bifurcation) that occurs to the solution of the
modified van der Pol equation, and can be seen from equation (3.13) as the
coalescence of the two solutions as § 0. See figure 11 for the bifurcation curve in
control space.

(if) & = O(1)

1. The solution. The formalization of the approach for an N harmonic expansion
is given in §3a. The application of 2THB to the modified van der Pol equation is
similarly performed with two and three harmonics, and the results for the expansion
of five harmonics are shown in figure 8, with two values of g and g, (4 = 0.04,
B =-—049, and u = 1.0, § = 2.0). The agreement between analytical and numerical
results for the unstable limit cycle at (u,f) = (0.04, —0.49) can be viewed
alternatively by comparing their relative frequency spectra shown in figure 9.
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Figure 9. Numerical and analytical relative frequency spectra for (4, ) = (0.04, —0.49)
in equation (3.2). , Numerical spectra; ®, 2THB amplitudes.
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Figure 10. (a), (¢) Numerical and analytical parameter-response curves for equation (3.2)
—0.25). (b), (d) Numerical and analytical frequency variation with x4 for equation (3.2)
—0.50). 2THB: ————, unstable; ——, stable. Numerical: ®, unstable; @, stable.

(B=
8=

Parameter-response diagrams can be obtained with very little computational
effort, and since there is a second control parameter, £, present in the modified van
der Pol equation, the maximum response versus the first control parameter, x4, can
be produced for various values of f. Figure 10 shows two such diagrams for
B =—025 and —0.50 along with the x variation of the frequency of the periodic
solution and the numerical solutions are superimposed. However, it can be shown
that the numerical solutions stop prematurely, this is because the continuation
routines have difficulty proceeding along the path of unstable orbits as the orbits are
no longer smooth but squarelike. 2THB correctly predicts the existence of the
unstable limit cycle for decreasing u, but requires more harmonics to accurately
represent it.

2. The stability. The eigenvalues of the jacobian matrix for more than one
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0

-20

0 0.4 0.8 1.2
u
Figure 11. Control space (u, ) diagram depicting the boundary of the limit cycle solutions, and
the curve indicates the fold bifurcation. , 2THB; ®, numerical.
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Figure 12. Numerical and analytical variation with the parameter x4, of the characteristic
multiplier for £ = —0.10 in equation (3.2)

harmonic are evaluated from equation (3.9) in the same way as discussed in §3a. The
eigenvalues of matrix L of (3.9) determine the stability of the solution (be it periodic
or stationary). The modified van der Pol equation undergoes a Hopf bifurcation at
4 = 0 for any value of B, however the magnitude of the ensuing periodic orbit is j
dependent. The complete bifurcation analysis for a Hopf bifurcation, when applying
2THB, was discussed in §3a, but the modified van der Pol equation exhibits a Fold
bifurcation which is identified when one eigenvalue crosses through the origin from
negative to positive. Analogous to the Hopf bifurcation at u =0, eigenvalues
associated with the higher harmonics cross the imaginary axis in conjugate pairs
indicating that all the coefficients change stability at the fold. In figure 11 a control
space (u, ) diagram shows the curve of folds from the fifth-order system and
compares this with the numerically obtained curve.

Finally the characteristic multiplier first introduced in §3a is evaluated for the
modified van der Pol equation, and compared with its numerically obtained value.
Figure 12 shows such a comparison for a three harmonic expansion at # = —0.1, and
when f is negative there is a saddle node bifurcation at a particular value of #, which
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is observed in figure 12 where the curve passes through b = 1, so that b > 1 indicates
that the periodic orbit is unstable.

(c) van der Pol equation with escape
With the inclusion of the two timescales, equation (3.3) becomes

'+l = (W —1)x— (@ —p) 2’ +ya? —2¢0x/0T —e(x* — u) 0x /0T + O(€?). (3.14)

(i) p<
An equation without an antisymmetric vector field requires a two harmonic

approximation, including a mean of oscillation, for an agreement with multiple scales
to O(u) (cf. Appendixes A and B):

x(t) = Z+ A(1) cos (ws) + C(7) cos (2ws) + D(7) sin (2ws). (3.15)

Substituting (3.15) into equation (3.14) and following the same procedure as
previously then five equations are obtained for 4, C, D, Z and w involving derivatives
of A, C'and D with respect to 7. These equations are rather messy and so attention
is restricted to limit cycle solutions for which 7 derivatives are zero:

Gy = 0= 2yZ* =27 +yA*+yC*+vyD? = 0, (3.16a)
@, = 0= w—ZDw+2yZ+y0—1 = 0, (3.16b)
b, = 0= 14(du—d472— A2~ 20% — 2D — 470 —4yD]w) = 0, (3.16¢)
Gy = 0= 4p(— 4220 — 24°C — (9 — (D> — 2%,4% — 80D — (4y% —2) D/w = 0,
(3.16d)
by = 0=>4uD—47°D—2A4*D —D*— (2D + 8wC + (4yZ —2) C/w+yA?/w = 0.
(3.16¢)

Interpretation. 1. A solution of these five nonlinear algebraic equations can be
derived for x4 small and |y| € 4/ p:

Zy,=2yp+0?), Ay =2+/p+0u), (3.17a, b)
CL=—%yn+0@®), Dy=0u?), o,=1-3yu+0u?). (3.17 c—e)

Ify = 0 then the solution is to this order the same as that of the van der Pol equation.
If y is small the saddle point at x = 1/y is a long way from the origin and hence the
limit cycle for small u, as expected, is not affected by this unstable point.

The non-zero solution of equation (3.16) reveals that as u approaches y, the orbit
grows and tends to the saddle point at « = 1/y. At u = u, the solution is the known
homoclinic orbit (see Merkin & Needham 1986), where the frequency of the orbit is
zero, and the periodic solution no longer exists for g > p,. The three-dimensional
system (3.16) undergoes a Hopf bifurcation which appears to coincide with the point
of vertical inflection for the mean of oscillation in the parameter-response diagrams
(cf. figure 16). This Hopf bifurcation indicates the presence of the homoclinic orbit,
which manifests numerically as a rapid decrease in frequency and increase in the
mean of oscillation towards the saddle point. Of course the series solution which
requires a finite non-zero frequency cannot adequately represent the homoclinic
orbit.

Figure 13 shows the periodic solution obtained numerically and via (3.16) for
(#,y) = (0.01,2.0) and (0.036, 2.0) and the later case shows the need to include higher
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Figure 13. Comparison of a two harmonic approximation with numerical results of orbits at (a),
() ((u,y) = (0.01,2.00)) and at (b), (d) ((4,y) = (0.036, 2.0)) for the solution of equation (3.3). —,
2THB; ————, numerical.

harmonics, particularly for the frequency equation, in the solution for x(t) as the
orbit approaches the saddle point at x = 1/v.

2. The stability of the origin can be found by linearizing the amplitude evolution
equations, i.e. (3.16c—¢) with the 7 derivatives, to obtain the stability matrix L

df 9a S UM | K
dt| dc|=| 0 m —6]]dc
op 0 6 ul|dp

and its eigenvalues e, = ju, €. , = ju+ 6i. The origin is therefore stable (unstable)
according as u negative (positive).

The stability of the orbit growing out of the Hopf bifurcation at (x, x) = (0,0) is
found to be stable until the homoclinic orbit is reached.

(ii) 4= 0(1)

1. The solution. The vector field of the van der Pol equation with escape is
asymmetric and hence even harmonics are retained in the expansion for x() (cf.
result in Appendix B). Results for the five harmonic expansions are shown in figure
14, for (u,v) = (0.036,2.0) and (0.142, —1.0). When (u,y) = (0.036,2.0) the orbit
approaches the saddle point at x = 0.5, and the oscillations spend a ‘long time’ near
the saddle point as can be seen in the (x,t) plot. Also when (#,y) = (0.142, —1.0) in
figure 14 the orbit is close to the saddle point but the agreement between analytical
and numerical is still very good for a five harmonic expansion. A comparison of the
amplitudes can be made with the relative frequency spectra, and in figure 15 with
(#,7y) = (0.14, —1.0) there is very good agreement.

Parameter-response diagrams are featured in figure 16 for y = 2.0 and —1.0. The
maximum and minimum extents of the oscillation are given by the maximum and
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Figure 14. Comparison of a five harmonic approximation with numerical results of orbits at (a), (c)
((u,y) = (0.01,2.00)) and at (b), (d) ((%,y) = (0.036,2.0)) for the solution of equation (3.3).
2THB; ——-—, numerical.

0.87

<
N

amplitudes

relative frequency

Figure 15. Numerical and analytical relative frequency spectra for (4,y) = (0.14, —1.0)
in equation (3.3). ——, Numerical spectra; &, 2THB amplitudes.

minimum response over a period. The mean of oscillation is determined (numerically
or analytically) via
1 T
r=I= -q—,J‘O x(s) ds,

and all three are included in figure 16. The location of the homoclinic orbit is easily
visualized where the maximum (y > 0) or minimum (y < 0) point of the oscillation
touches x = 1/, and the solution undergoes a homoclinic bifurcation. Figure 16 also
shows the y variation of the frequency, depicting the rapid decrease in frequency at
the critical value of x, and an indication of the need for more harmonics.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Two timescale harmonic balance 495

1.0 ®)

response

L 0 002 004 0 005 010 015
i |

2‘ 1.0}_(© 1.0 (d)

e

@) ® 0.6 0.6

e =

25

58 0.2 0.2

H c,) " —

0 0.02 004 0 005 010 015
u u

Figure 16. (a), (b)) Numerical and analytical parameter-response curves for equation (3.3) at
v =2.0and —1.0. (¢), (d) Numerical and analytical frequency variation with u for equation (3.3).
—2THB; &, numerical.
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Figure 17. Control space (4,7y) diagram showing the curve of homoclinic bifurcations which is
the boundary of the limit cycle solutions. , 2THB; ®, numerical.

The resulting equations (3.7) for a three harmonic expansion of the oscillator given
by equation (3.3) are given in Appendix C.

2. The stability. The stability is again determined by analysing the eigenvalues of
the matrix L that occurs in equation (3.9). The analysis for the Hopf bifurcation at
# =0 is as discussed in §3a and this bifurcation is not y dependent, however, a
homoclinic bifurcation occurs which is v dependent and is indicated by the change
in stability of the system (3.8) which is manifested by a Hopf bifurcation. The locus
of these bifurcation points (in (#,7y) control space) is shown in figure 17, and a
comparison is made with the numerical curve by the approach of Kaas-Petersen &
Scott (1988).
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4. Summary

The development of 2THB has been discussed through application to the
autonomous van der Pol equation that has periodic solutions emanating from a Hopf
bifurcation. The implementation of both a symbolic manipulator and path following
routines has facilitated the evaluation and analysis of the amplitude evolution
equations for the Fourier expansion of the solution, x(f). In practice it is found that
for # = 1 and 2, seven and nine harmonics were required respectively to represent the
solution. However, when g = 5, 51 harmonics were necessary. This illustrates the
restriction on the magnitude of y according to the number of harmonies that can be
handled by symbolic manipulation.

Application of this method to a further two autonomous oscillator equations,
namely the modified van der Pol and the van der Pol with escape, permits a detailed
discussion of local bifurcation points such as the Hopf and the saddle node. In the
case of the van der Pol with escape, the approach of the periodic solutions to the
homoclinic orbit is well resolved until the frequency equation breaks down as a result
of the lack of higher harmonics in the expansion for x(¢).

The introduction of a small implicit parameter ¢, permits fast and slow timescales
associated with the phase and the amplitude variations respectively, whereby a
stability argument can be incorporated. Often e can be identified with an explicit
small parameter present in the equation. The stability of the periodic solutions is
determined by the collective stability of each term in the expansion. However, an
approximation of the characteristic multiplier can be determined from the
eigenvalues and eigenvectors of the stability matrix for the amplitude evolution
equations, and in each case it shows good agreement with the numerical result.

In conclusion 2THB has the following three distinguishing features. Firstly, the
method provides a simple representation for the periodic solutions as a finite series
of harmonics throughout which the energy is distributed and which has a natural
stability argument. Secondly, there is no need for an explicit small parameter.
Thirdly, parameter-response curves and the location of bifurcation points are usually
determined at less than a third of the computational cost of direct numerical
integration.

We are indebted to Christian Kaas-Petersen for his guidance in the use of the path following
package, pATH. We acknowledge many useful discussions with John Brindley. J.S. is supported by
SERC, to which thanks and acknowledgements are also due. In addition we also thank the referees
for their comments and in particular for pointing out the paper by Kuzmak.

Appendix A. Agreement between multiple scales and two timescale
harmonic balance for a general autonomous second-order system

A general autonomous equation is considered for u < 1
E—pt+a = f(x, ) (A1)
with f(0,0) = (0f/0x) g, ¢y = (0f/0) (4. ) = O,

Le. fis at least quadratic in « and @&. To apply multiple scales and two timescale
harmonic balance f(x,%) is expanded as a third-order Taylor series about the
equilibrium position (0, 0)

J(@,2) = Y00 2% + 701 B + 711 3+ V000 € + Vo1 £2E + Yor, 28 + 714, 2,
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T L s
Where 7/2.7 = §<W)(O o and ')’wlc = E(W)(O 0).

Application of multiple scales reveals the existence of small amplitude periodic
solutions to equation (A 1), of the form

—u 1
x(t)=2< )cos 1+0(u)t+0 A9
Yoo Yor Vo1 V11t Yoor + 371 ( () (@) (A 2)

providing that Yoy Y1 + Vo1 Y11+ Yoor + 37111 # 0.
By following the method of 2THB to derive solutions close to the limit cycle
solution, equation (A 1) is written in the form

¥+ = (0*—1)x+f(x,2")—2e02" /0T +ef(x, ") O /Or, (A3)

where f(x,2") = p+ Y5 €+ 271, %+ Voor €2+ 2Y011 "+ 3y,,, €%, and a two harmonic
expansion for the periodic solutions and O(e) close trajectories is sought

x(t) = Z+A,(1) cos ws+ A,(7) cos 2ws + B, () sin 2ws,

where Z and the amplitudes, 4,(7), 4,(7) and B,(7), are determined as in §2 (equation
(2.12)) by first deriving the following five equations

Z =370 A} =y A5 0*+0(47) + 0y, dA, /dT+ Oy, dA,/dT+ Cy, dB, /dT = 0
A (1= —740(2Z+A4,) =370 By 0 — 271, Ay 0 — 400 AT — 1V 011 47 0°)

d4, d4, dB
4 ab, _
0(A1)+01w d +O2w d O dT O’
dA4 d4 d4, dB,
ed—7-1+01‘41 d1+02A' dr +C3A1d
= A, (p0 =Yoo By + 701 0(Z+345) — 271, By 0 + 17001 AT 0 + 3711, 47 0°) /20 + O(43),
d4 d4, dB,
ed—12+01“12 o +02A2d(;1 +C34, o = (By—4B,w*+2ud, w0 +%y, 43 w)/ 20+ 0(A43),
dB d4 d4, dB
e—d?z-i-Ole I 1+0232 o +0332 o —(4,—44,0*—2uB,w

— V00 43 +ir11 47 0%)/20+0(43),

where C, 5, Cyz, Cyz, O, Cys Oy OIA,’ OzA,» 03‘4,’ OlAZ’ CzAZ, CaAz’ 0132’ 0232’ 0332 are
all functions of Z, w, 4, 4,, B,, s and the ys. As the parameter g is small the
coefficients Z, A,, 4,, and B, are ordered, so that 1 > A4, > (Z,4,,B,). Limit cycle
solutions of the above system are obtained by setting d4,/dr, d4,/dr and dB,/dr to
zero, and then we find, wy, Z;, 4,1, 4,1, and By, as follows:

Ay =2(=p/ (Voo Yor T Yor V11 + Yoo + 37111))% + 0(/‘%)’
Zy =5 tvn) AL+ 01,

Ay, = § =Yoo +71) AL+ O0(W?),

By, =343 Y0 +O(?),

=1+= (10700 + 760+ 10700 V11 + 4711 + 9000 +37011) +O(u?),
6 Yoo Yor + Vo1 Y11+ Yoor 3V
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where the suffix L refers to values on the limit cycle solution. These results for the
amplitude values on the periodic orbit are in agreement with those from multiple
scales (equation (A 2)). Furthermore it can be shown, though it is a tedious task, that
the amplitude evolution equations are also in agreement.

Appendix B
The dynamical system under investigation is given by
x=flx,n), x,feR? ueR (B1)

and is assumed to be antisymmetric. Given that x = (x,,%,) = (2, %) and f= (f,,f,),
then a system is antisymmetric if

fi(_xv —xz,,u) = _fz'(xvxzu“) for i=1,2.
For example the van der Pol equation (3.1) is
By = ®y = — (=) = —fi(—xy, =2y, ) = fr(xy, %, ),
By = — (2} —p) 2y — 2, = — ((—2,)* —p) (—2y) — (—2;) =
—fol =@y, — @y, p) = fo2y, 2o, ).

It follows that for an antisymmetric oscillation it takes half the period to go from
(x,,0) to (—x,;,0). Therefore as the period of the oscillation is 2n/w

2(t) = —x(t+n/w)
and hence

N
Z+ 3 (A, cos (nws)+ B, sin (nws)) = —Z —

n=1

(4, cos (nws+nn)+ B, sin (hws+nn)).
1

Mz

This therefore implies that Z = 0 and the following equation holds
A, (cos (nws) + cos (hws) cos (nTt) —sin (rnws) sin (1))
+ B, (sin (nws) +sin (rws) cos (n1) + cos (nws) sin (rw)) = 0. (B 2)
Consequently if » is even then
A, (2 cos (nws))+B,,(2sin (nws)) =0 Vs=4,, B,=0

and if n is odd the bracketed expressions of (B 2) are zero.

Therefore, if the autonomous system under investigation has an antisymmetric
vector field, the above result indicate that the mean of oscillation and the even
Fourier coefficients for the expansion of the solution x(f) can be ignored.

Appendix C

Equations (3.8) are determined for the van der Pol equation with escape (3.3) when
x(t) is represented by a three harmonic expansion and the equations are given in full
below :

x(t) = Z+A(7) cos (ws) + O(1) cos (2ws) + D(7) sin (2ws) + B (1) cos (Bws) + G(7) sin (3ws),
H=(A,C,D,E,@G).
Phil. Trans. R. Soc. Lond. A (1992)
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The matrix M(Z, H,w, 1,y) has the following components:

M, = 227D+ AG —4w), M,, = 2(22G—CG +DE),
M,, = 2(2ZA —27E +CE+DG), M,, = 2D(C—27),
M,, = 470+ A —C2+ D, M,, = 2274 +27E +
240+ CE+DG),
My, = 472+ 242+ 24K +3C°+ D*+ 2B +2G° — 4y, M,, = 2(AG +CD +8w),
M,, = 2(2ZA +AC+2CE), M,, = 2(AD +200),
M,, = 2(2ZG +24D + CG—DE), M,, = 2(AG+CD—8w),
My, = 4Z% +24°— 2AE + 0+ 3D+ 2B° + 262 —dy, M,, = 2D(2E—A),
M,, = 2(2ZA + AC+2DG), M,, = 470+ A* + 4AE +C*— D",
M,, = 2(2ZA +AC+20E),
M,, = 2D(2E—A4), M,, = 472 +24+2C*
+2D% 4+ 3%+ G*—4p,
M,, = 2(EG +120), M,; = 2(2ZD+24G + CD),
M,, = 2(AD+200), | M,, = 2(2ZA+AC+2DG),
M,, = 2(EG — 120), My, = 472+ 24+ 202

+2D*+ B2+ 3G*—4u.
The vector G(Z, H,w,u,y) has the following components:

G, = 40224+ 40ZAC + 40 ZOE + 40ZDG + 0A® + 0A*E 4+ 20AC? + 20AD? + 20A E?
+20wAG? —4wpd + wC?E + 20CDG — wD?*E + 4yAD + 4yCG — 4yDE,
Gy = 2(80w*C—4wZ2D —4wZAGQ —20A%D — 20ACG + 20ADE — wC?D — wD?
—2wDE? —20DG* +4wuD 4+ 4yZC +yA® + 2yAE —20),
Gy = 2(8w2D +4wZ?C +20wZA* + 4w ZAE 4+ 20A*C + 20ACE + 20ADG
+wC?+ wCD?+ 20CE? 4+ 20CG? — 4wuC + 4y ZD + 2yAG — 2D),
G, = 360 —1202*G — 120ZAD — 60A*G — 6wACD — 6wC*G — 6wD*G
—3wE*G—3w@® +120uG + 8y ZE +4yAC—4E,
Gy = 360G+ 1202°E + 120ZAC + wA® + 6wA*E + 3wAC? — 3wAD? + 6wC*E
+6wD?E + 3wE? + 3wEG* — 120uE + 8y ZG + 4yAD — 4G.
The equation that determines Z, is given by
E=2y7% —27Z,+y(A3+C} +D2 +E2 +G%) =0
=7y, = (1/2y) 1 £ (1 -2y*4] + CL + D} + B} +G1))
The equation that determines wy, is given by
Q=—-40} A +40, Z A Dy +4w, Z;, C1, Gy, — 4w, Z Dy Er 4w A2 G — w0, C2 G4,
+2w, C, Dy, By + 0wy, D% Gy, —8yZ; Ay, —4yA; O+ 44, —4yC B —4yD., Gy, = 0,
= wy, ={1—yA 1 (2ZA+AC+CE+DG)+ (A (4ZAD +4ZCG —4ZDE + A*G'— C*@G
+2DE + D*G))*}i + (2471 (4ZAD +4Z0G —4ZDE + A*G — C*G + 2DE + D*G)) .

ol

).
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